
Enbug: When Debuggers Go Bad

David Williams-King
Dept. of Computer Science

University of Calgary
2500 University Drive NW

Calgary, AB, Canada T2N 1N4
dcwillia@ucalgary.ca

John Aycock
Dept. of Computer Science

University of Calgary
2500 University Drive NW

Calgary, AB, Canada T2N 1N4
aycock@ucalgary.ca

Daniel Medeiros Nunes
de Castro

Dept. of Computer Science
University of Calgary

2500 University Drive NW
Calgary, AB, Canada T2N 1N4

dmncastr@ucalgary.ca

ABSTRACT
We have developed a tool, enbug, that intentionally induces
errors into software in a controlled fashion. The robustness
of students’ code can be challenged by presenting exotic fail-
ure scenarios for testing, without Herculean efforts on the
part of teaching assistants or instructors. Enbug also has ap-
plications in computer security and secure software courses,
by being able to inject specific flaws into existing software
for students to locate and exploit. The implementation of
enbug is an example of tool reuse, through the automated
(ab)use of a debugger.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in
Education—Computer-assisted instruction; K.3.2 [Comput-
ers and Education]: Computer and Information Science
Education; D.2.5 [Software Engineering]: Testing and
Debugging—Testing tools; D.3.4 [Programming Languages]:
Processors—Debuggers

General Terms
Experimentation, Reliability

Keywords
education, testing, debuggers, aspect-oriented programming

1. INTRODUCTION
It is hard to think of reliable computer systems as a disad-

vantage. However, teaching budding computer scientists to
produce robust code is a challenge in a modern computing
environment. Dynamic memory allocation doesn’t fail, file
I/O never falters, network sockets always return the right
number of bytes. Pick a favorite language, it doesn’t matter
– how many times has code like

p = (char *)malloc(123);

*p = ’X’;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’10, June 26–30, 2010, Bilkent, Ankara, Turkey.
Copyright 2010 ACM 978-1-60558-820-9/10/06 ...$10.00.

or

read(fd, buf, sizeof(buf));

puts(buf);

or

read(in_socket, buf, 100);

write(out_socket, buf, 100);

been turned in by students, unnoticed?1

All too often, unless students’ code is being thoroughly au-
dited, we assert that flaws like this may not be caught. One
could argue that proper testing would reveal the flaws, but in
fact there are many types of failure that are hard to produce
under normal circumstances; race conditions, for instance,
may lie dormant for years in well-tested code. Furthermore,
the in-depth system knowledge needed to test certain cases
may be lacking in teaching assistants and instructors alike.

The production of robust, well-written code is also not a
priority in many cases. Assignments are crafted to provide
hands-on reinforcement and learning of conceptual ideas from
the classroom. The nature of the solution, elegant code or
Rube Goldberg code, jury rigged or robust code, makes no
difference so long as it works tolerably well for non-extreme
test cases. Mediocre code is someone else’s problem.

We temporarily turn now to a seemingly unrelated topic.
The second author teaches a course in computer viruses and
malicious software to senior undergraduate and graduate
students [4]. One of the aspects of this course is that it
is hands-on, and students are given assignments in both of-
fense and defense in a secure laboratory environment. Part
of the course content deals with exploitable software flaws
like buffer overflows; in this sense the content overlaps with
courses on secure software (e.g., [14, 16]).

One assignment in the course involves exploiting a soft-
ware vulnerability to run some shellcode (code sent by an at-
tacker to start a shell that they can issue commands to). Ini-
tially, students exploited short programs to which they had
the source code. This is pedagogically sound in that the ba-
sic concepts are taught, but we wanted to extend this assign-
ment to bigger, more realistic programs. While large pro-
grams do tend to naturally exhibit exploitable flaws, there is
one problem: how will an instructor know which programs
are exploitable, or where?

1For those unfamiliar with C: these examples dynamically
allocate some memory (omitting the failure check) and write
to it; read some NUL-terminated data (forgetting to check
for failure and that a NUL was read); read and write 100
bytes (not checking for failure or that 100 bytes were read).

28

One approach is to simply abdicate that responsibility and
see what students find on their own [10]; this is commend-
able in that the students’ results give back to the community
by finding bugs, but frustrating for students and insoluble
in some instances. Another approach is for the instructor
to add bugs into the source code themselves, but large pro-
grams can be nontrivial to build and rely on multitudes of
libraries and other software packages. Ideally there would be
some way to add bugs into software without recompilation.

The common theme in both these scenarios is that soft-
ware failures don’t occur at convenient times and in conve-
nient places. We have developed a tool to address this prob-
lem: enbug. Enbug can be used to cause controlled failures
and induce bugs in bug-free software, without substantial
effort on the part of an instructor.

The remainder of this paper is structured as follows. Sec-
tion 2 describes enbug from a usage standpoint; Section 3
describes enbug’s implementation. Examples of enbug us-
age, along with our experiences using the tool so far, are in
Section 4. Related work is in Section 5, and we conclude in
Section 6.

2. ENBUG
Enbug can be run on an arbitrary program by specifying

its process ID (if the program is already running) as

enbug -f spec.enbug -p processid

or by naming the program to run along with its arguments:

enbug -f spec.enbug program arg1 arg2 ... argn

The parameter “spec.enbug” is an enbug specification file
describing where and how enbug should alter the program
as it executes. Enbug, in essence, is implementing an aspect-
oriented programming (AOP) system [9], and the language
used in the specification file is based on AspectJ [1].

An enbug specification file contains zero or more aspects,
which act as namespaces. The shortest nonempty, nonin-
teresting specification is one defining an aspect that has no
further instructions in it:

aspect foo {

// do nothing
}

Inside an aspect, two things can be defined: pointcuts and
advice. Intuitively, pointcuts specify where enbug should
pause the program’s execution, and advice tells enbug what
to do when a pointcut is reached.

The general form of a pointcut is

pointcut name: expression;

where the name identifies the pointcut so that it may be
referenced by other pointcuts. It is also used to select which
advice to execute. The expression may be one of three types
of built-in pointcut, the name of a user-defined pointcut, or
the logical combination (using Boolean and, or, and not,
plus grouping with parentheses) of any of these. The three
built-in pointcuts are:

execution(pattern)
The execution of all functions matching the pattern,
which may consist of characters and the Kleene star,
e.g., foo, bar*, *baz*.

atline(filename,line)
Execution that reaches the given filename and line
number.

caller(pattern,framenumber)
Adds context, by selecting those locations where the
function specified by the pattern occurs at a given
frame number – frame number 1 is the caller, frame
2 is the caller’s caller, and so on.

Combining built-in pointcuts together, for example, an as-
pect “log” could tell enbug to watch a program’s execution
for the function “main” (via the “start” pointcut) or the ex-
ecution of the “openfile” function:

aspect foo {

pointcut start(): execution(* main(..));

pointcut log(): start() ||

execution(* openfile(..));

}

A pointcut has been reached. Now what? The answer is
specified using advice. The general form of advice is

advice location: pointcut {

debugger code
}

The location indicates when the debugger code will run rel-
ative to the named pointcut. The locations “before” and“af-
ter”run before and after the pointcut, as is obvious; “around”
is meant to be used when the advice replaces a function call
completely.2

In a foreshadowing of enbug’s implementation, the debug-
ger code is a sequence of commands for the GNU GDB de-
bugger [6],3 with two enhancements. The ith parameter to
a function can be referenced as @param(i), and @proceed()

can be used in “around” advice to replace a function call.

3. ENBUG IMPLEMENTATION
Enbug is implemented in C++, with occasional detours

into Lex and Yacc.4 It runs on both Linux and FreeBSD.
The key to enbug’s functionality, though, is its use of the
GNU GDB debugger.

Besides the normal command-line user interface, GDB has
alternative“command interpreters”that may be used to con-
trol its operation. Their format allows easy machine pars-
ing, and permit GDB to be used as the engine behind a
graphical debugger, for example. Enbug uses the GDB/MI
interface [7]. For illustration, Figure 1 is the GDB/MI in-
teraction (edited for brevity) that sets a breakpoint at line
3 of a program, then runs it; input to GDB is highlighted,
and indented lines are wrapped for readability.

Enbug uses GDB breakpoints to implement pointcuts,
with the exception of the “caller” built-in pointcut. For
caller, it would be infeasible to set a breakpoint at every
location which had a particular calling routine, for example
(in fact, the general problem is statically undecidable, be-
cause it requires knowing which functions will call each other
prior to run time). Instead, caller relies on the “atline” or

2Although it is currently an alias for “before.”
3The latest GDB allows Python scripting, so this is not a
major limitation.
4Strictly speaking, flex and bisonc++.

29

~"GNU gdb Red Hat Linux (6.5-37.el5_2.2rh)\n"
~"Copyright (C) 2006 Free Software Foundation, Inc.\n"
(gdb)

-break-insert 3

^done,bkpt=number="1",type="breakpoint",disp="keep",enabled="y",

addr="0x0804836c",func="main",file="x.c",fullname="/home/user/foo.c",line="3",times="0"

(gdb)

-exec-run

^running

(gdb)

*stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",frame=addr="0x0804836c",

func="main",args=[],file="x.c",fullname="/home/user/foo.c",line="3"

(gdb)

Figure 1: Example GDB/MI interaction

“execution” built-ins to set breakpoints, and as such must
be specified in conjunction with one of them.

The location of advice reflects the implementation slightly
too. Advice specified as “before” and “around” executes on
the first line of a function (when a breakpoint is set with an
execution pointcut), but “after” advice executes on the next
line of the calling function.

One final complication is that GDB does not stop twice
if two breakpoints are set at the same place. Upon reaching
a breakpoint, enbug must walk through the pointcuts to see
which ones were reached, because two different pointcuts
may have resulted in the same breakpoint being set.

4. EXAMPLES AND EXPERIENCE
We have included a number of examples in this section,

to illustrate how enbug can be used for causing bugs that
are conducive to testing and teaching. For space reasons, we
only show the enbug specifications.

The first example causes the malloc dynamic memory al-
locator to fail (returning 0, or NULL) after the Nth call to
it. Malloc was chosen arbitrarily, and this could be done for
any library routine. We use the debugger variable “$n,” ini-
tialized in advice executed just before main, to keep track of
the number of calls. The “@proceed(0)” command performs
the return with the failure value of 0.

aspect mallocfail {

pointcut main(): execution(* main(..));

pointcut malloc(): execution(* malloc(..));

advice before(): main() {

set $n = 0

set $N = 2

}

advice before(): malloc() {

if $n > $N

@proceed(0)

else

set $n = $n + 1

end

}

}

A related example, more specific to malloc, is to have it fail
after N bytes have been allocated. We again use debugger
variables, adding malloc’s parameter (the requested alloca-
tion size) to track the amount of memory.

aspect mallocfail {

pointcut main(): execution(* main(..));

pointcut malloc(): execution(* malloc(..));

advice before(): main() {

set $n = 0

set $N = 256

}

advice before(): malloc() {

if $n > $N

@proceed(0)

else

set $n = $n + @param(1)

end

}

}

This next example causes fread to return fewer objects than
requested. Reading or writing less than requested is a le-
gitimate occurrence in network code, albeit one not often
well-handled, making it a prime test case.

aspect returnless {

pointcut fread(): execution(* fread(..));

advice before(): fread() {

set @param(3) = @param(3) - 1

}

}

A similar enbug specification could increase the size of a
buffer to inject a potentially-exploitable flaw; this would
simulate the programmer giving the wrong buffer size in
their code. For example, here the length parameter for a
call to snprintf is increased by 100 bytes:

aspect incbuffer {

pointcut snprintf(): execution(* *snprintf(..));

advice before(): snprintf() {

set @param(2) = @param(2) + 100

}

}

To weaken hardened code, more secure functions can be
replaced with less secure ones. This example replaces strl-
cpy with strncpy, and also shows how to return a value from
a previous function call that was performed using the GDB
“call” command. (Note that the return value semantics do

30

not match between the two functions, however; this is shown
for illustration only.) As the function is being replaced com-
pletely, we use “around” advice here.

aspect makeinsecure {

pointcut strlcpy(): execution(* strlcpy(..));

advice around(): strlcpy() {

call strncpy(@param(1) , @param(2) , @param(3))

@proceed($$0)

}

}

Finally, this last example adds (pseudo-)random noise into
input being read. This would be useful to test network-
ing code that should be robust to transmission errors. A
breakpoint before main allows initialization: we seed the
pseudo-random number generator by calling srandom with
the current time, using C library functions.

The pointcut for fgets is specified slightly differently, as
“*fgets” as opposed to “fgets.” The reason is that fgets is
implemented on Linux using a function called “ IO fgets,”
and without the extra star the pointcut would not match.
In the“incbuffer”aspect example above, “snprintf”was given
as “*snprintf” for similar reasons.

Each time fgets, a.k.a. IO fgets, is entered, we flip a coin
by calling the random function for a single random bit, then
we skip to the end of fgets’ execution using the GDB finish
command. This is not specified as “after” advice, because
we need access to fgets’ parameters, and that is not possible
with “after”because of where the GDB breakpoint is placed.

At the end of fgets’ execution, if the random bit was 1, we
pick a random position in the string that was read in, and
replace that character (effectively indexing into the buffer
as an array) with an “X.”

aspect addnoise {

pointcut main(): execution(* main(..));

pointcut fgets(): execution(* *fgets(..));

advice before(): main() {

set $t = time(0)

call srandom($t)

}

advice before(): fgets() {

set $rndbit = random() & 1

finish

if $rndbit == 1

set $len = strlen(@param(1))

set $pos = random() % $len

set @param(1) [$pos] = ’X’

end

}

}

Our experience with an initial deployment of enbug admit-
tedly did not go perfectly. Requiring debugging information
to be in an enbugged program is to be expected, because
this is needed for a debugger. However, enbug’s function-
ality was limited without debugging versions of shared li-
braries as well; this required a separate package installation
on Linux.

(More generally, a limitation of our approach is that we
are restricted to languages that can be debugged using GDB.
We would be unable to easily affect changes in an interpreted
Python script, for example.)

We wanted to deploy enbug in a security course where
it would inject bugs into network servers. The servers in
question were started from inetd, which waits for incoming
network connections, then starts the server running. The
newly-started server inherits the open network connection
on the standard input and output during process creation.
Unfortunately, because enbug is communicating with gdb
using the standard input and output, enbug did not play
nicely with inetd servers. We conjecture that this problem
may be worked around.

The other issue had do to with forking processes, a com-
mon operation in some server architectures. The desired be-
havior is for enbug to continue monitoring both parent and
child processes for pointcuts, but GDB does not support
this. On some platforms, GDB will allow both processes to
be under its control, but only one may be actively execut-
ing [6], which is not appropriate for network servers.

Finally, as would be expected, running any program under
a debugger has a negative impact on performance. Like the
story of a mirror distracting people from noticing the slow
elevator, part of dealing with performance issues is psycho-
logical: students would be exploiting “remote” servers, and
so therefore some latency would be expected anyway. We
hope to report on our experience using enbug with students
and its benefits in future work.

5. RELATED WORK
Hunt and Thomas use the term “enbugging” but just as

a lead-in to discussing defensive programming techniques.
In fact, they go so far as to say ‘We rarely put bugs in
directly’ [8, page 10], the opposite of what our tool does.

Testing of student code has been done for decades, of
course, and various techniques are published (e.g., [3, 5, 12]).
We are not aware of any prior use of deliberate bug insertion,
nor does there seem to be any work on inserting exploitable
flaws into programs as we can do with enbug, for educational
or other purposes. Locasto [11] relates his experience having
students attack their own programs, and a tool like enbug
may be used to support that process.

PROSE, an early AOP system, was implemented using
the Java VM’s debugger interface, JVMDI [13]. JVMDI is
not a debugger per se, but is an interface that debuggers
and similar programs can use [15]. The Axon AOP system
from 2003 uses the JVMDI too [2]. No other AOP systems
appear to employ software tool reuse by using an existing
debugger like enbug does.

6. CONCLUSION
Bugs do not always occur where and when they are help-

ful, in terms of testing student code and teaching students
about security exploits. Our contribution to address this
problem is enbug, a tool that can inject exotic bugs into ex-
isting programs simply by modifying an specification based
on aspect-oriented programming. Enbug’s intended target
audience is teaching assistants and instructors, and because
students do not directly see or use enbug themselves, it may
be used at any level of instruction. In terms of implementa-
tion, enbug is an example of software tool reuse, resulting in
a novel method of implementing aspects. The range of ex-
amples enbug is able to handle demonstrates its usefulness,
and we speculate that it has other uses beyond adding bugs
into code.

31

7. ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and En-

gineering Council of Canada via ISSNet, the Internetworked
Systems Security Network. Rob Walker assisted with some
AOP aspects.

8. REFERENCES
[1] AspectJ Team. The AspectJ language.

http://www.eclipse.org/aspectj/doc/released/

progguide/language.html, last accessed 12 January
2010.

[2] S. Aussmann and M. Haupt. Axon – dynamic AOP
through runtime inspection and monitoring. In
Proceedings of the Workshop on Advancing the
State-of-the-Art in Runtime Inspection, 2003.

[3] J. Aycock. The ART of compiler construction
projects. ACM SIGPLAN Notices, 38(12):28–32, 2003.

[4] J. Aycock and K. Barker. Viruses 101. In Proceedings
of the 36th SIGCSE Technical Symposium on
Computer Science Education, pages 152–156, 2005.

[5] J. Denzinger and J. Kidney. Evaluating different
genetic operators in the testing for unwanted emergent
behavior using evolutionary learning of behavior. In
IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, pages 23–29, 2006.

[6] Free Software Foundation. Debugging with GDB,
2010. 9th edition.

[7] Free Software Foundation. The GDB/MI interface. In
GDB [6], chapter 27. 9th edition.

[8] A. Hunt and D. Thomas. The art of enbugging. IEEE
Software, 20(1):10–11, 2003.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of the
European Conference on Object-Oriented
Programming, pages 220–242, 1997.

[10] J. Leyden. Students find 44 Unix flaws as homework.
The Register, 16 December 2004.

[11] M. E. Locasto. Helping students 0wn their own code.
IEEE Security & Privacy, pages 53–56, May/June
2009.

[12] C. MacNish. Evolutionary programming techniques
for testing students’ code. In Proceedings of the
Australasian Conference on Computing Education,
pages 170–173, 2000.

[13] A. Popovici, T. Gross, and G. Alonso. Dynamic
weaving for aspect-oriented programming. In
Proceedings of the 1st International Conference on
Aspect-Oriented Software Development, pages
141–147, 2002.

[14] M. L. Stamat and J. W. Humphries. Training 6=
education: Putting secure software engineering back in
the classroom. In Proceedings of the 14th Western
Canadian Conference on Computing Education, pages
116–123, 2009.

[15] Sun Microsystems. Java(tm) virtual machine debug
interface reference. http://java.sun.com/j2se/1.5.
0/docs/guide/jpda/jvmdi-spec.html, last accessed
12 January 2010.

[16] J. Walden and C. E. Frank. Secure software
engineering teaching modules. In Proceedings of the
3rd Annual Conference on Information Security
Curriculum Development, pages 19–23, 2006.

32

